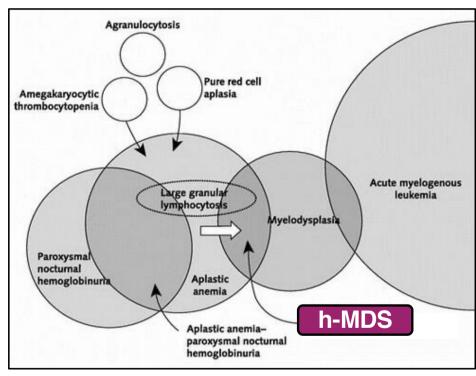
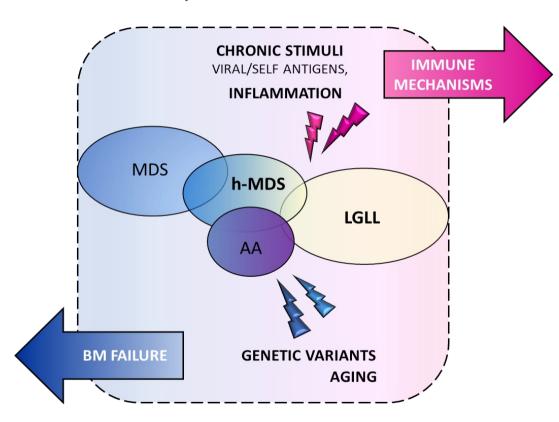


28 maggio 2022

# Le sindromi mielodisplastiche ipocellulari


Renato Zambello, MD

Dipartimento di Medicina - DIMED Ematologia e Immunologia Clinica Università di Padova






## h-MDS: AN OVERLAP AREA BETWEEN MDS, AA AND LGLL



Young NS. Ann Intern Med. 2002.

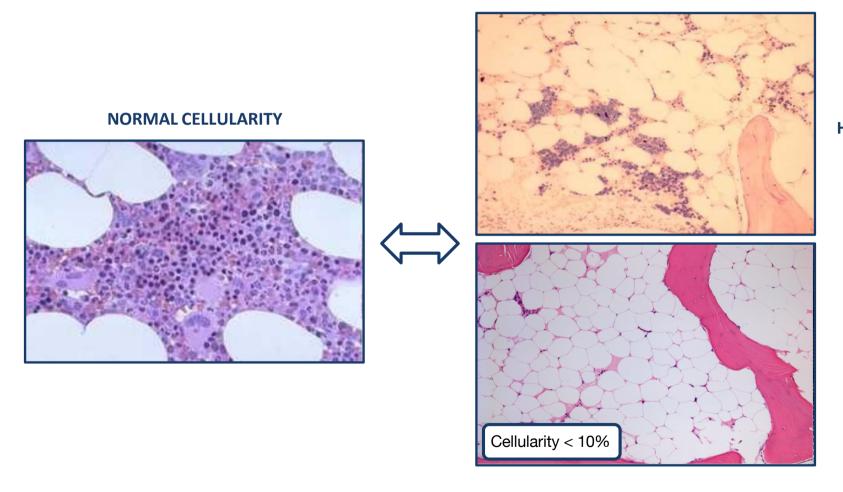




#### 2016 WHO CLASSIFICATION OF MYELOID NEOPLASM AND ACUTE LEUKEMIA

MDS with fibrosis

Hypocellular MDS


10-15% of MDS

| Name                                                 | Dysplastic<br>lineages | Cytopenias* | Ring sideroblasts as % of<br>marrow erythroid elements | BM and PB blasts                        | Cytogenetics by conventional<br>karyotype analysis                        |
|------------------------------------------------------|------------------------|-------------|--------------------------------------------------------|-----------------------------------------|---------------------------------------------------------------------------|
| MDS with single lineage dysplasia (MDS-SLD)          | 1                      | 1 or 2      | <15%/<5%†                                              | BM <5%, PB <1%, no Auer rods            | Any, unless fulfills all criteria for<br>MDS with isolated del(5q)        |
| MDS with multilineage dysplasia (MDS-MLD)            | 2 or 3                 | 1-3         | <15%/<5%†                                              | BM <5%, PB <1%, no Auer rods            | Any, unless fulfills all criteria for<br>MDS with isolated del(5q)        |
| MDS with ring sideroblasts (MDS-RS)                  |                        |             |                                                        |                                         |                                                                           |
| MDS-RS with single lineage<br>dysplasia (MDS-RS-SLD) | 1                      | 1 or 2      | ≥15%/≥5%†                                              | BM <5%, PB <1%, no Auer rods            | Any, unless fulfills all criteria for<br>MDS with isolated del(5q)        |
| MDS-RS with multilineage<br>dysplasia (MDS-RS-MLD)   | 2 or 3                 | 1-3         | ≥15%/≥5%†                                              | BM <5%, PB <1%, no Auer rods            | Any, unless fulfills all criteria for<br>MDS with isolated del(5q)        |
| MDS with isolated del(5q)                            | 1-3                    | 1-2         | None or any                                            | BM <5%, PB <1%, no Auer rods            | del(5q) alone or with 1 additiona<br>abnormality except -7 or del<br>(7q) |
| MDS with excess blasts<br>(MDS-EB)                   |                        |             |                                                        |                                         |                                                                           |
| MDS-EB-1                                             | 0-3                    | 1-3         | None or any                                            | BM 5%-9% or PB 2%-4%, no<br>Auer rods   | Any                                                                       |
| MDS-EB-2                                             | 0-3                    | 1-3         | None or any                                            | BM 10%-19% or PB 5%-19%<br>or Auer rods | Any                                                                       |
| MDS, unclassifiable (MDS-U)                          |                        |             |                                                        |                                         |                                                                           |
| with 1% blood blasts                                 | 1-3                    | 1-3         | None or any                                            | BM <5%, PB = 1%,‡ no<br>Auer rods       | Any                                                                       |
| with single lineage dysplasia<br>and pancytopenia    | 1                      | 3           | None or any                                            | BM <5%, PB <1%, no Auer rods            | Any                                                                       |
| based on defining cytogenetic abnormality            | 0                      | 1-3         | <15%§                                                  | BM <5%, PB <1%, no Auer rods            | MDS-defining abnormality                                                  |
| Refractory cytopenia of childhood                    | 1-3                    | 1-3         | None                                                   | BM <5%, PB <2%                          | Any                                                                       |

h-MDS are STILL not recognized as a distinct subgroup of MDS, but are rather defined by an age-adjusted reduction of bone marrow (BM) cellularity or, according to AA definition, by a BM cellularity ≤ 30%



#### **BONE MARROW HYSTOLOGY**



Hypocellularity (<25%) (rather than aplastic)



#### **BONE MARROW CELLULARITY IS AGE DEPENDENT**

Table 1 Characterization of patients

| Age (years) | Number of cases | Male/female | Bone marrow cellularity (%) |
|-------------|-----------------|-------------|-----------------------------|
| 0-9         | 9               | 6/3         | $60.0 \pm 20.0^{b}$         |
| 10-19       | 13              | 4/9         | 56.5 + 4.4                  |
| 20-29       | 12              | 7/5         | $54.6 \pm 4.6$              |
| 30-39       | 11              | 4/7         | $54.6 \pm 4.6$              |
| 40-49       | 10              | 6/4         | $54.6 \pm 18.2$             |
| 50-59       | 9               | 9/0         | $52.4 \pm 9.5$              |
| 60-69       | 12              | 6/6         | $58.3 \pm 8.3$              |
| 70-79       | 13              | 9/4         | 56.5 + 8.7                  |
| 80-100      | 11              | 3/8         | $41.2 \pm 5.9$              |
| Total       | 100             | 54/46       |                             |

<sup>&</sup>lt;sup>a</sup> Bone marrow cellularity was measured by the image analyzing system and determined by the percentage of cellular marrow, represented by the formula: (area of hematopoietic cells)/(total area of bone marrow examined) × 100 (%).

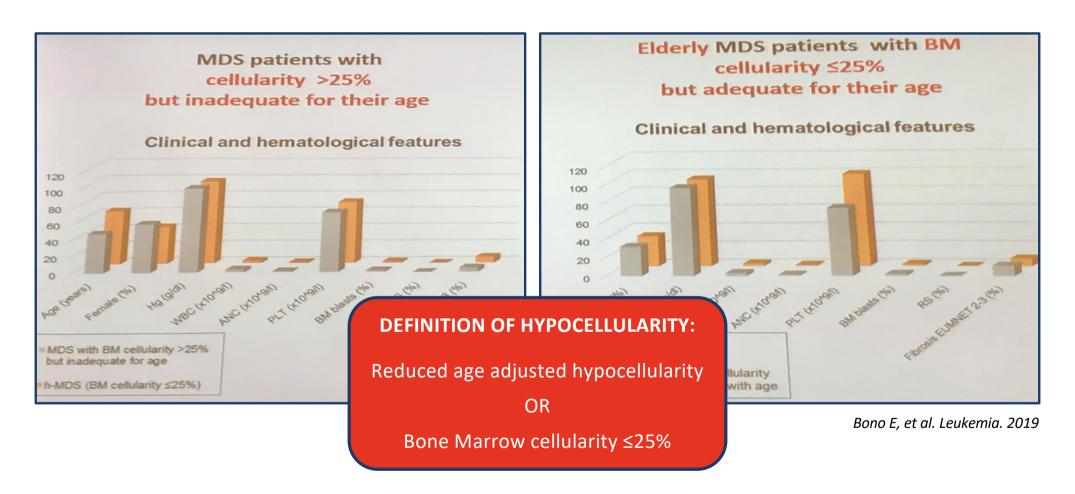
Ogawa et al. Mechanisms of Ageing and Develop 2000



Bone Marrow Examination • Decision Making and Problem Solving

European consensus on grading bone marrow fibrosis and assessment of cellularity

Table 2. Normal ranges of bone marrow cellularity for selected age groups, as adapted from the literature.<sup>27-29,3,31</sup>


| Age (years) | % Hematopoietic area* |
|-------------|-----------------------|
| 20-30       | 60-70                 |
| 40-60       | 40-50                 |
| ≥70         | 30-40                 |
|             |                       |

Thiele et al. Haematologica 2005

<sup>&</sup>lt;sup>b</sup> Values presented as mean ± S.E.M.



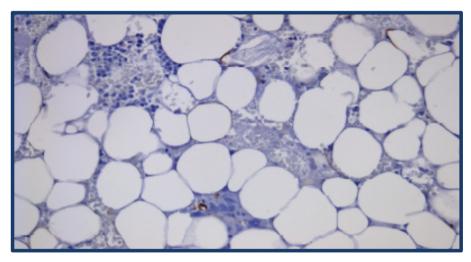
#### **HOW TO DEFINE BONE MARROW CELLULARITY?**



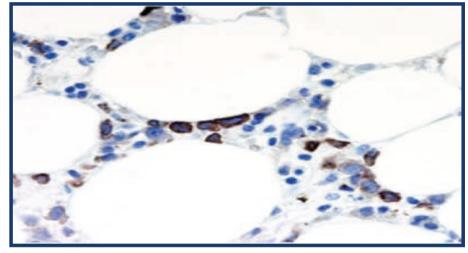


## h-MDS: AN OVERLAP AREA BETWEEN n-MDS AND AA

#### **DIFFERENTIAL DIAGNOSIS**


|                                 | n-MDS               | h-MDS                                       | AA                        |   |                     |
|---------------------------------|---------------------|---------------------------------------------|---------------------------|---|---------------------|
| MARROW CELLULARITY              | Normal/Increased    | Decreased                                   | Decreased                 | 1 |                     |
| MACROCYTOSIS                    | +                   | +                                           | - (except for PNH clones) |   |                     |
| DYSGRANULOPOIESIS               | +                   | +                                           | -                         |   |                     |
| DYSMEGAKARYOPOIESIS             | +                   | +                                           |                           |   |                     |
| BLASTS                          | Often increased     | +/-                                         | Absent                    |   | <b>BM HYSTOLOGY</b> |
| RING SIDEROBLAST                | +                   | +/-                                         |                           |   |                     |
| FIBROSIS                        | Occasional          | Occasional                                  | -                         |   |                     |
| KARYOTYPIC<br>ABNORMALITIES     | ++                  | +                                           | -/+                       |   |                     |
| PROGRESSION                     | >25%                | >25%                                        | ≈10%                      |   |                     |
| RESPONSE TO IST                 | ı                   | +                                           | ++                        |   |                     |
| PNH DEFECT                      | Absent              | Rare                                        | ≈30%                      |   |                     |
| LGL                             | +                   | ++                                          | -                         |   |                     |
| EXTRAHEMATOLOGICAL AUTOIMMUNITY | -                   | ++                                          | +/-                       |   |                     |
| SOMATIC MUTATIONS               | MDS related variant | ↓SF3B1 ↓SRSF2, ZRSR2,<br>U2AF1 ↓Co-mutatios | ↑BCOR/BCORL ↓TET2         |   | GENETICS            |
| CLONE SIZE                      | ++                  | +                                           | -                         |   |                     |
| LEUKEMIC EVOLUTION              | +                   | +/-                                         | -                         |   |                     |

Adapted from J. Durrani, J.P. Maciejewski. Blood. 2019




#### **DIFFERENTIAL DIAGNOSIS: BM HYSTOLOGY**

**APLASTIC ANEMIA** 



h-MDS





CD34+ CELLS

..but they are not always present



# DIFFERENTIAL DIAGNOSIS: ROLE OF GENETICS

Table 2: Comparison of genetic alterations between patients with h-MDS and NH-MDS

| Variables | Number examined | Total cohort (%) | h-MDS (%) | NH-MDS (%) | P value |
|-----------|-----------------|------------------|-----------|------------|---------|
|           |                 | Mutated          | Mutated   | Mutated    |         |
| FLT3/ITD  | 366             | 1.1%             | 1.0%      | 1.1%       | >0.999  |
| NRAS      | 369             | 2.2%             | 1.0%      | 2.6%       | 0.688   |
| KRAS      | 367             | 1.1%             | 0%        | 1.5%       | 0.578   |
| JAK2      | 368             | 0.8%             | 1.0%      | 0.7%       | >0.999  |
| RUNX1     | 367             | 11.4%            | 4.0%      | 14.2%      | 0.005*  |
| MLL/PTD   | 352             | 0.6%             | 0%        | 0.8%       | >0.999  |
| IDH1      | 368             | 0.5%             | 1.0%      | 0.4%       | 0.470   |
| IDH2      | 366             | 2.2%             | 0%        | 3.0%       | 0.113   |
| ASXL1     | 366             | 17.8%            | 7.1%      | 21.7%      | 0.001*  |
| TET2      | 282             | 12.4%            | 11.4%     | 12.7%      | >0.999  |
| DNMT3A    | 369             | 10.0%            | 3.0%      | 12.6%      | 0.006*  |
| TP53      | 369             | 8.7%             | 3.0%      | 10.8%      | 0.020*  |
| SETBP1    | 369             | 2.4%             | 1.0%      | 3.0%       | 0.454   |
| EZH2      | 369             | 3.8%             | 0%        | 5.2%       | 0.014*  |
| SF3B1     | 369             | 11.4%            | 12.0%     | 11.2%      | 0.854   |
| U2AF1     | 369             | 7.9%             | 5.0%      | 8.9%       | 0.278   |
| SRSF2     | 369             | 10.8%            | 6.0%      | 12.6%      | 0.089   |

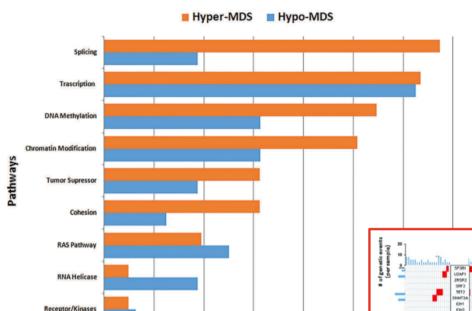
<sup>\*</sup>Statistically significant if P<0.05.

Chi-Yuan Yao, et al. Oncotarget. 2016

#### www.impactjournals.com/oncotarget/

Oncotarget, Vol. 7, No. 39

Research Paper


Distinct mutation profile and prognostic relevance in patients with hypoplastic myelodysplastic syndromes (h-MDS)

Chi-Yuan Yao<sup>1,\*</sup>, Hsin-An Hou<sup>1,\*</sup>, Tzung-Yi Lin<sup>1</sup>, Chien-Chin Lin<sup>1,2</sup>, Wen-Chien Chou<sup>1,2</sup>, Mei-Hsuan Tseng<sup>1</sup>, Ying-Chieh Chiang<sup>1</sup>, Ming-Chih Liu<sup>3</sup>, Chia-Wen Liu<sup>3</sup>, Yuan-Yeh Kuo<sup>4</sup>, Shang-Ju Wu<sup>1</sup>, Xiu-Wen Liao<sup>5</sup>, Chien-Ting Lin<sup>1,5</sup>, Bor-Shen Ko<sup>1</sup>, Chien-Yuan Chen<sup>1</sup>, Szu-Chun Hsu<sup>2</sup>, Chi-Cheng Li<sup>5</sup>, Shang-Yi Huang<sup>1</sup>, Ming Yao<sup>1</sup>, Jih-Luh Tang<sup>1,5</sup>, Woei Tsay<sup>1</sup>, Chieh-Yu Liu<sup>6</sup>, Hwei-Fang Tien<sup>1</sup>

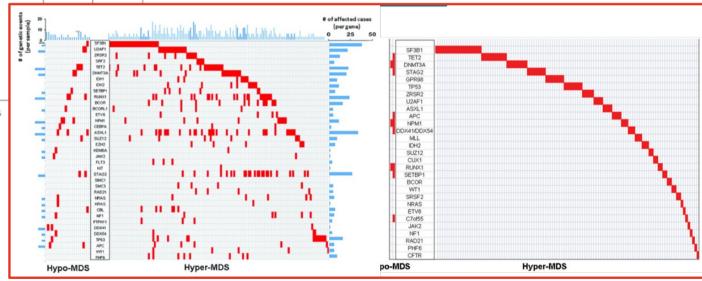
.....Our findings provide evidence that h-MDS indeed represent a distinct clinico-biological subgroup of MDS and can predict better leukemia-free survival and OS.







10%


15%

% of Patients

20%

Figure 1. Frequency of gene mutations involved in common functional pathways. Genes included in common functional pathways: Splicing: SF3B1, SRSF2, ZRSR2, U2AF1/2. DNA methylation: TET2, DNMT3A, IDH1/2. Transcription: SETBP1, RUNX1, BCOR/BCORL1, ETV6, NPM1, CEBPA, GATA2. Chromatin Modification: ASXL1, SUZ12, EZH2, MLL, KDM6A. Receptor/Kinases: JAK2, FLT3, KIT. Cohesion: STAG2, SMC3, SIMC1, RAD21. RAS Pathway: KRAS/NRAS, CBL, NF1, PTPN11. RNA Helicase: DDX41, DDX54, DHX29. Tumor Suppressor: TP53, APC, WT1, PFH6.

Patients: 237 MDS 32 h-MDS



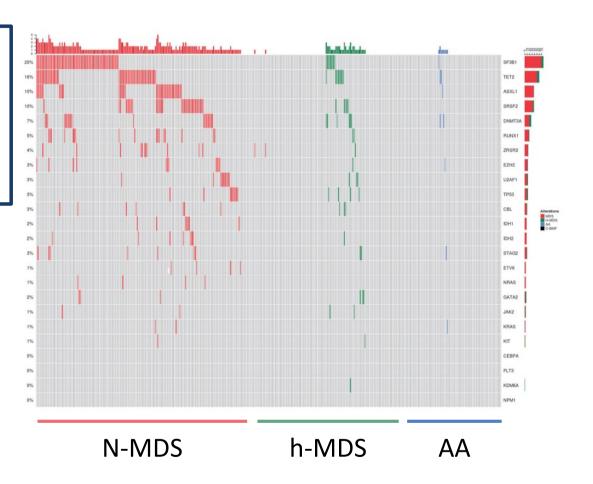
Nazha A, et Al. Haematologica. 2015



Leukemia (2019) 33:2495–2505 https://doi.org/10.1038/s41375-019-0457-1

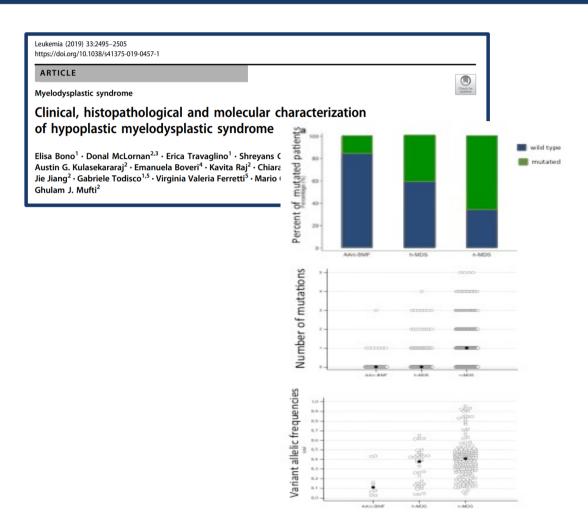
ARTICLE

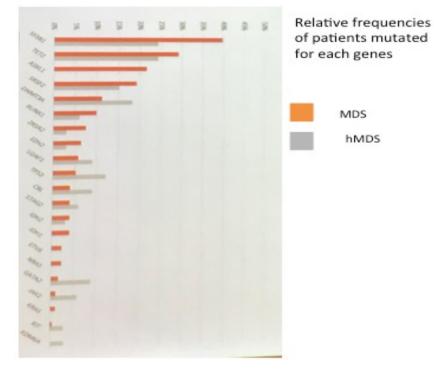
Myelodysplastic syndrome


Clinical, histopathological and molecular characterization of hypoplastic myelodysplastic syndrome

Elisa Bono<sup>1</sup> · Donal McLornan<sup>2,3</sup> · Erica Travaglino<sup>1</sup> · Shreyans Gandhi<sup>2</sup> · Anna Galli<sup>1</sup> · Alesia Abigael Khan<sup>3</sup> · Austin G. Kulasekararaj<sup>2</sup> · Emanuela Boveri<sup>4</sup> · Kavita Raj<sup>2</sup> · Chiara Elena<sup>1</sup> · Robin M. Ireland<sup>2</sup> · Antonio Bianchessi<sup>1,5</sup> · Jie Jiang<sup>2</sup> · Gabriele Todisco<sup>1,5</sup> · Virginia Valeria Ferretti<sup>5</sup> · Mario Cazzola<sup>1,5</sup> · Judith. C. W. Marsh<sup>2</sup> · Luca Malcovati<sup>1,5</sup> · Ghulam J. Mufti<sup>2</sup>

nMDS: n 727

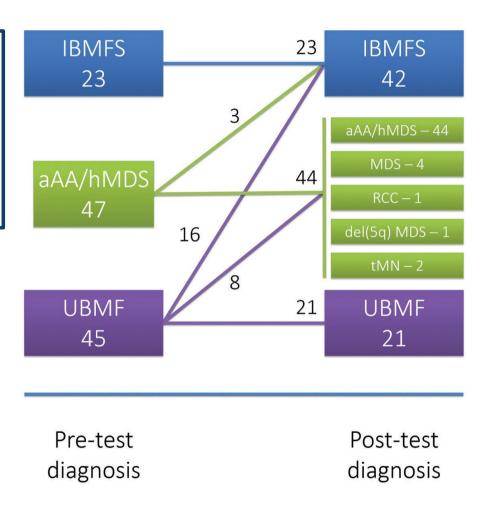

hMDS: n 278


AA: n 136



Bono E, et Al. Leukemia. 2019

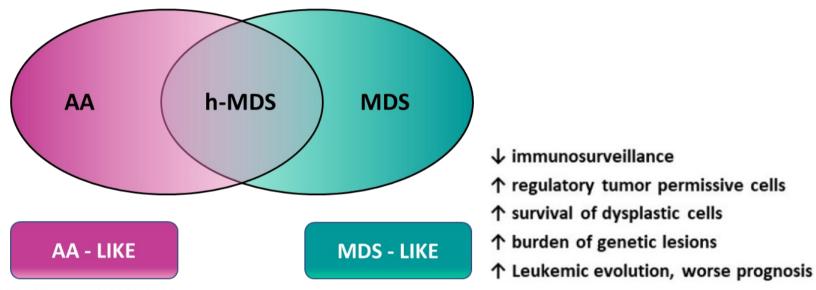









Utility of clinical comprehensive genomic characterization for diagnostic categorization in patients presenting with hypocellular bone marrow failure syndromes


Piers Blombery,<sup>1,2,3</sup> Lucy C. Fox,<sup>3,4,5\*</sup> Georgina L. Ryland,<sup>3\*</sup> Ella R. Thompson,<sup>2,3</sup> Jennifer Lickiss,<sup>3</sup> Michelle McBean,<sup>3</sup> Satwica Yerneni,<sup>3</sup> David Hughes,<sup>6</sup> Anthea Greenway,<sup>6</sup> Francoise Mechinaud,<sup>6</sup> Erica M. Wood,<sup>5</sup> Graham J. Lieschke,<sup>1,7</sup> Jeff Szer,<sup>1</sup> Pasquale Barbaro,<sup>8</sup> John Roy,<sup>8</sup> Joel Wight,<sup>9</sup> Elly Lynch,<sup>10,11,12</sup> Melissa Martyn,<sup>10,11,12</sup> Clara Gaff<sup>2,10,12</sup> and David Ritchie<sup>1</sup>



Haematologica 2021

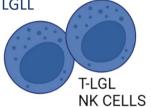


#### h-MDS: A GREY ZONE AREA?



- ↑ cytotoxic and proinflammatory cells
- ↓ regulatory cells
- ↑ immune activation
- ↑ Response to IST, better prognosis

Adapted from Fattizzo B. Cancers. 2021




#### h-MDS: BIOLOGICAL FEATURES

ALTERATIONS OF BOTH INNATE AND ADAPTIVE IMMUNITY, CO-OCCURRENCE WITH LGLL

| Types                        | Normocellular/Hypercellular<br>MDS                                                                           | hMDS                                                                                                       |
|------------------------------|--------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|
| T-cytotoxic cells<br>(CTLs)  | Increased and oligoclonal. In high-risk patients, IFN-γ-producing CTLs decrease favoring leukemia evolution. | Increased and clonal;<br>produce interferon-gamma<br>(IFN-γ) and decrease after<br>response to IST.        |
| T-CD4+ cells Th<br>and Tregs | Increased T regs collaborate<br>in the suppression of<br>immune surveillance and<br>leukemic evolution.      | Increased and polyclonal Th cells producing IFN-γ. Tregs are reduced and correlate with dyserythropoiesis. |
| LGL clones                   | Increased polyclonal and oligo NK-LGL) more than in AA.                                                      | clonal (both T-LGL and                                                                                     |

Fattizzo B. Cancers. 2021



Large granular lymphocytic leukemia coexists with myeloid clones and myelodysplastic syndrome

Jibran Durrani<sup>1</sup> · Hassan Awada<sup>1</sup> · Ashwin Kishtagari<sup>1,2</sup> · Valeria Visconta<sup>1</sup> · Cassandra Kerr<sup>1</sup> · Vera Adema<sup>1</sup> · Yasunobu Nagata<sup>1</sup> · Teodora Kuzmanovic<sup>1</sup> · Sanghee Hong<sup>1</sup> · Bhumika Patel<sup>1,2</sup> · Aziz Nazha<sup>1,2</sup> · Alan Lichtin<sup>2</sup> · Sudipto Mukherjee<sup>2</sup> · Yogen Saunthararajah<sup>1,2</sup> · Hetty Carraway<sup>2</sup> · Mikkael Sekeres<sup>2</sup> · Jaroslaw P. Maciejewski<sup>1,2</sup>

Durrani J, Leukemia, 2019

13/240 (5%)

Characterization of myelodysplastic syndromes (MDS) with T-cell large granular lymphocyte proliferations (LGL)

Rami S. Komrokji  $\odot^1$  · Najla al Ali $^1$  · David Sallman $^1$  · Eric Padron $^1$  · Jeffrey Lancet  $\odot^1$  · Lubomir Sokol $^1$  · Christa Varnadoe $^2$  · P. K. Burnette $^3$  · Alan List $^4$ 

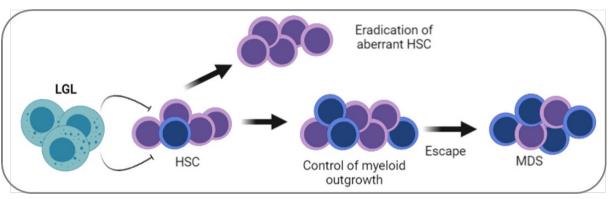
Komrokji R, Leukemia, 2020

322/1177 (27%)



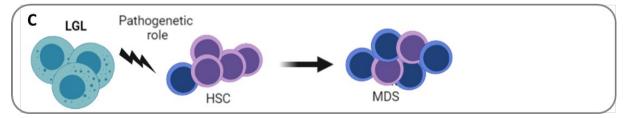
#### **COEXISTENCE OF H-MDS AND LGLL: MORE THAN A COINCIDENCE?**

#### PATHOGENETIC HYPOTHESES


## COMMON MECHANISMS

(mutations, inflammation, antigenic pressure, aging)

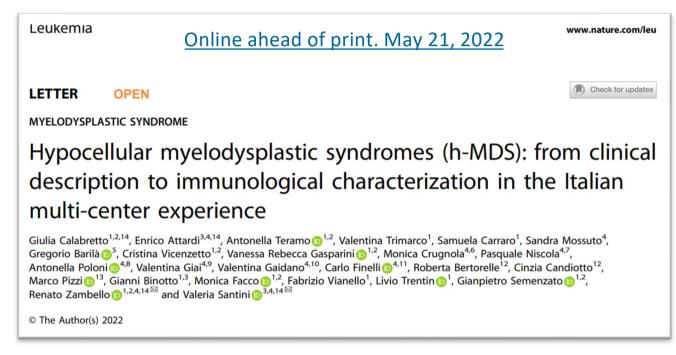



#### **LGLL AS A CONSEQUENCE**

(reactive response towards an aberrant HSC clone)



#### **LGLL AS A CAUSE**


(Pathogenetic role, promotes a BM damage)





#### H-MDS: RESULTS OF THE FISIM h-MDS MULTICENTER STUDY



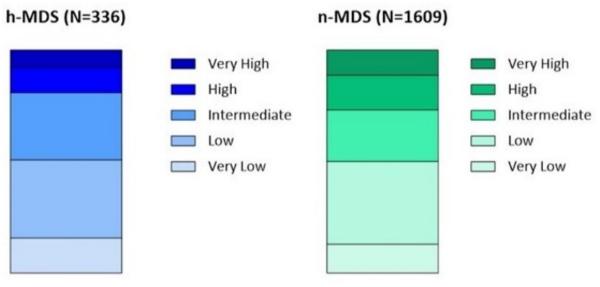




COMPARISON (clinical features, treatment, OS) of h-MDS vs n-MDS



PHENOTYPIC AND MOLECULAR CHARACTERIZATION OF h-MDS AT THE DIAGNOSIS (Cytotoxic T lymphocytes, NK cells)




## **RESULTS**

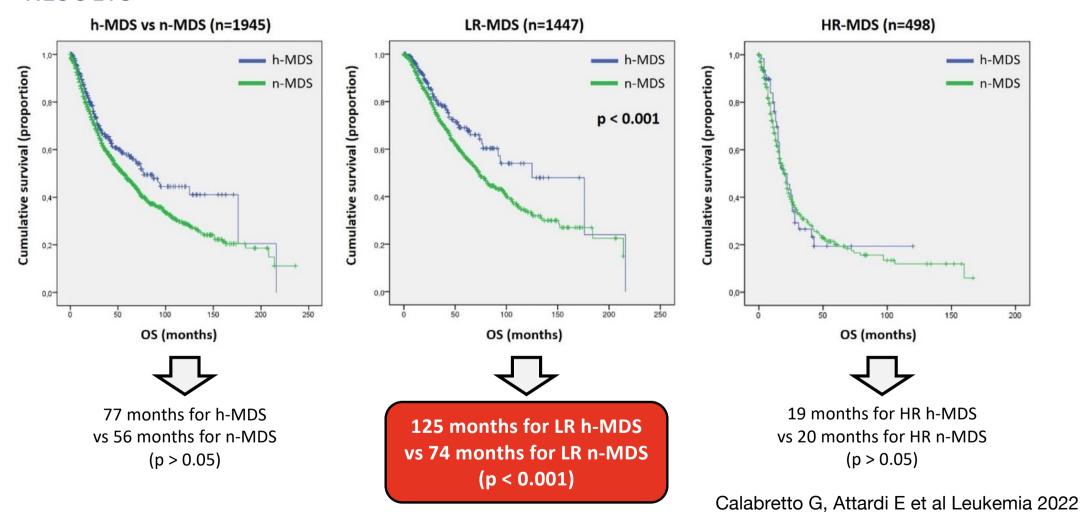
CLINICAL FEATURES (N = 1945 PATIENTS)

| MDS (N)        | h-MDS (336) | n-MDS (1609) |
|----------------|-------------|--------------|
| BM Cellularity | ≤ 30%       | > 30%        |
| Age (median)   | 75 years    | 74 years     |
| Sex (M/F)      | 1.14        | 1.67         |

p < 0.01



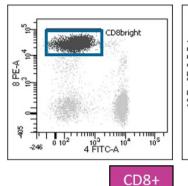
LR = IPSS-R < 3.5 HR = IPSS-R ≥ 3.5

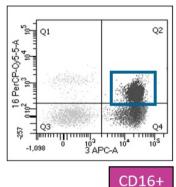


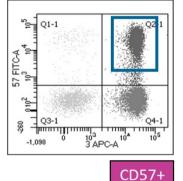

271/336 (81%) LR 65/336 (19%) HR 1176/1609 (73%) LR 433/1609 (27%) HR

Calabretto G, Attardi E et al Leukemia 2022




## **RESULTS**

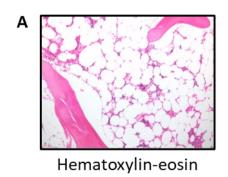


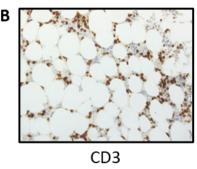



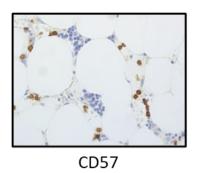

## **RESULTS**

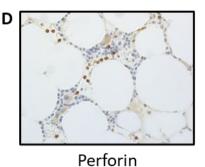
# IMMUNOPHENPTYPICAL ANALYSIS (PB and BM) CD3+ T CELL CHARACTERIZATION

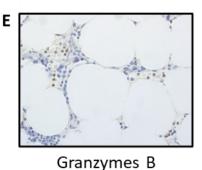






CLONAL EXPANSION of CD3+/CD8+/CD16±/CD56-/CD57+ cytotoxic T-cell subset in **6/12 (50%)** cases No recurrent TCR-V $\beta$  immunodominant expansions



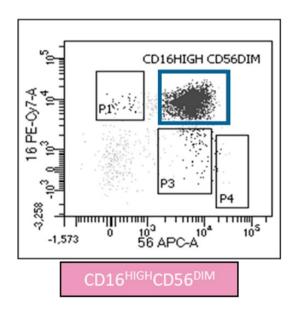


#### **BM INFILTRATION OF CYTOTOXIC T CELL**

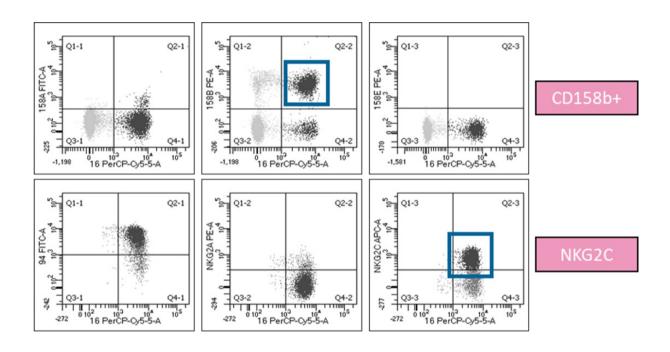












Calabretto G, Attardi E et al Leukemia 2022

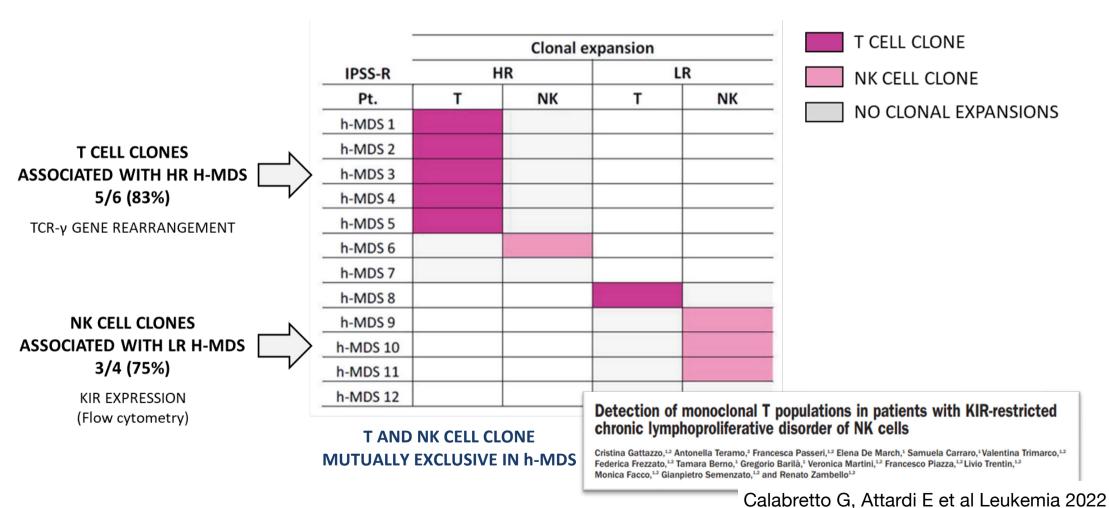


## **RESULTS**

# IMMUNOPHENPTYPICAL ANALYSIS (PB and BM) CD3- NK CELL CHARACTERIZATION





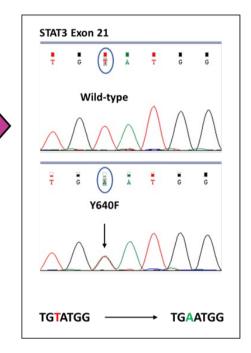

NK cell expansions in cells in **4/12 (33%)** cases CD16<sup>HIGH</sup>CD56<sup>DIM</sup>, CD57+, CD62L-, restricted pattern of NK cell receptor (CD158b+, NKG2C)

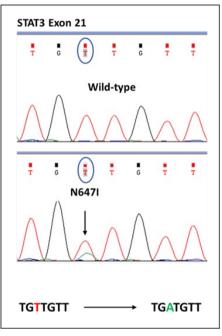
Calabretto G, Attardi E et al Leukemia 2022



#### RESULTS

#### **EVALUATION OF CLONALITY**




## **RESULTS**

#### **EVALUATION OF STAT3 and STAT5b MUTATIONS**

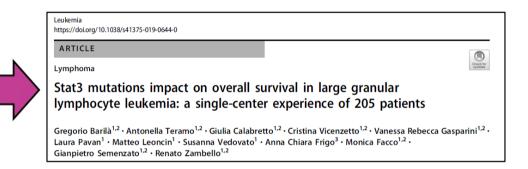
| Pt.      | IPSS-R | STAT3 | STAT5b |
|----------|--------|-------|--------|
| h-MDS 1  | HR     | WT    | WT     |
| h-MDS 2  | HR     | WT    | WT     |
| h-MDS 3  | HR     | N447I | WT     |
| h-MDS 4  | HR     | Y640F | WT     |
| h-MDS 5  | HR     | WT    | WT     |
| h-MDS 6  | HR     | WT    | WT     |
| h-MDS 7  | HR     | WT    | WT     |
| h-MDS 8  | LR     | WT    | WT     |
| h-MDS 9  | LR     | WT    | WT     |
| h-MDS 10 | LR     | WT    | WT     |
| h-MDS 11 | LR     | WT    | WT     |
| h-MDS 12 | LR     | WT    | WT     |





**2/12 (17%)** h-MDS patients harbore **STAT3 somatic mutations** in CD3+/CD57+ T-Lymphocytes




Calabretto G, Attardi E et al Leukemia 2022



## **RESULTS**

#### **EVALUATION OF STAT3 and STAT5b MUTATIONS**

| Pt.      | IPSS-R | STAT3 | STAT5b |
|----------|--------|-------|--------|
| h-MDS 1  | HR     | WT    | WT     |
| h-MDS 2  | HR     | WT    | WT     |
| h-MDS 3  | HR     | N447I | WT     |
| h-MDS 4  | HR     | Y640F | WT     |
| h-MDS 5  | HR     | WT    | WT     |
| h-MDS 6  | HR     | WT    | WT     |
| h-MDS 7  | HR     | WT    | WT     |
| h-MDS 8  | LR     | WT    | WT     |
| h-MDS 9  | LR     | WT    | WT     |
| h-MDS 10 | LR     | WT    | WT     |
| h-MDS 11 | LR     | WT    | WT     |
| h-MDS 12 | LR     | WT    | WT     |



**NEGATIVE PROGNOSTIC ROLE?** 



#### **SUMMARY**

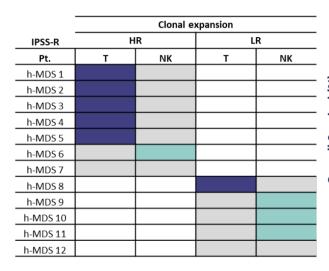


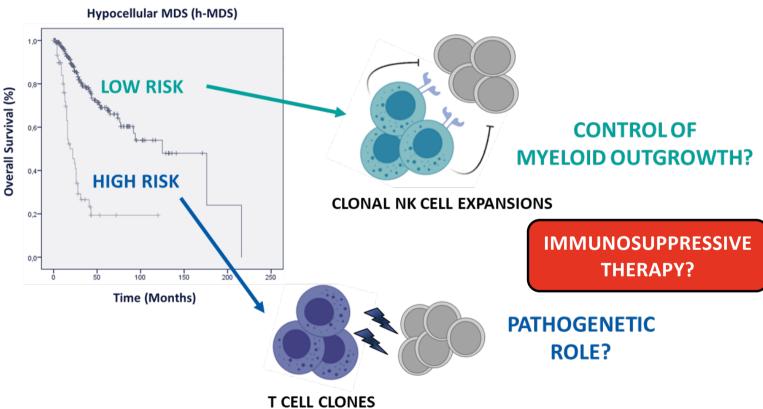
Clonal LGL expansion in almost all h-MDS patients



LR h-MDS showed enrichment of NK cell subsets with restricted patterns of NK receptors




T cytotoxic clones, with molecular findings typical of leukemic LGL (STAT3 mutations), were prevalent in HR h-MDS patients




T and NK cell clone are mutually exclusive in h-MDS patients



## **DISCUSSION**



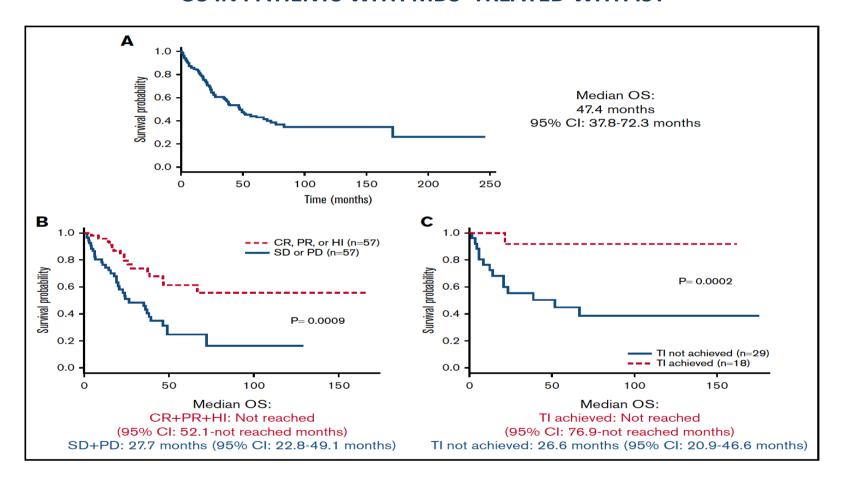




## **RESULTS**

| MDS (N)                        | h-MDS          | 6 (336)       | n-MDS (1609)    |                |  |
|--------------------------------|----------------|---------------|-----------------|----------------|--|
| BM Cellularity                 | ≤ 3            | 30%           | > 30%           |                |  |
| Age (median)                   | 7              | 5             | 7               | 4              |  |
| Sex (M/F)                      | 1.             | 14            | 1.0             | 67             |  |
| IPSS-R (N, %)                  | LR (271, 80.7) | HR (65, 19.3) | LR (1176, 73.1) | HR (433, 26.9) |  |
| Therapy (%)                    |                |               |                 |                |  |
| Observation/BSC                | 33.8           | 12.1          | 31.6            | 16.1           |  |
| ESA                            | 42.6           | 29.3          | 41.2            | 24.8           |  |
| Lenalidomide                   | 3.8            | 0             | 0.7             | 0.5            |  |
| Differentiation therapy (ATRA) | 4.6            | 5.2           | 6.4             | 7.9            |  |
| IST                            | 0.4            | 0             | 1.2             | 0.5            |  |
| Azacitidine                    | 5.1            | 36.2          | 2.8             | 25.1           |  |
| Low-dose Chemotherapy          | 0              | 0             | 4.7             | 5.0            |  |
| AML-Like Chemotherapy          | 0.4            | 1.7           | 0.3             | 6.2            |  |
| HSCT                           | 0              | 1.7           | 0.1             | 1.0            |  |
| Experimental trials            | 1.7            | 5.2           | 3.9             | 6.2            |  |
| Others                         | 7.6            | 8.6           | 7.1             | 6.7            |  |

IN our cohort,
IST was rarely applied,
irrespective of BM cellularity




## **IST CLINICAL TRIALS OF ATG BASED REGIMEN**

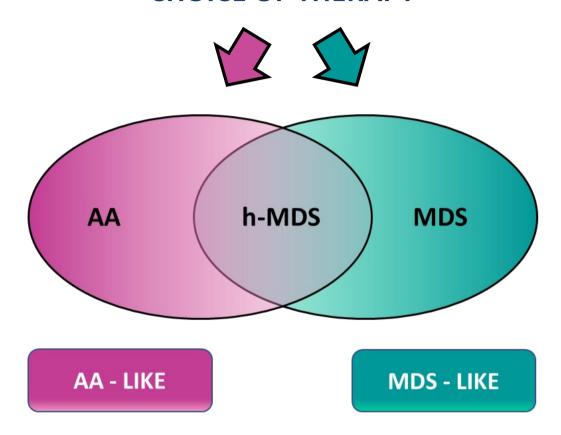
| Author<br>(pub year) |                             | Country              | N   | Age<br>(median) | Treatment              | RA<br>(%)              | HR<br>(%) |
|----------------------|-----------------------------|----------------------|-----|-----------------|------------------------|------------------------|-----------|
| Molldrem (2002)      |                             | US                   | 61  | 60              | hATG                   | 61                     | 34        |
| Saunthararajah (200  | 2)                          | US                   | 72  | 59              | hATG and/or CyA        | 46                     | 29        |
| Yazji (2003)         |                             | US                   | 31  | 59              | hATG and CyA           | 58                     | 23        |
| Steensma (2003)      |                             |                      |     | ^^              | 1.4.70                 | ^-                     | 0         |
| Stadler (2004)       | ORR ranging from 25% to 80% |                      |     |                 | ó                      | 40<br>27               |           |
| Broliden (2006)      |                             | Sweden               | 20  | 64              | rATG and CyA           | 85                     | 30        |
| Lim (2007)           |                             | UK, Germany<br>Italy | 96  | 56              | hATG                   | 84                     | 42        |
| Sloand (2008)        |                             | US                   | 116 | 60              | hATG and CyA<br>hATG   | 67                     | 48<br>24  |
| Passweg (2011)       |                             | Swiss,<br>Germany    | 45  | 62              | hATG and CyA vs<br>BSC | 47                     | 31        |
| Kadia (2012)         |                             | USA                  | 24  | 62              | rATG and CyA           | 41<br>ND<br>(low/int1) | 9<br>25   |



#### OS IN PATIENTS WITH MDS TREATED WITH IST



Stahl et al Blood Advances 2018




#### **CONCLUSIONS**

- Hypocellular LR MDS is characterized by a better prognosis, irrespective of WHO classification;
- Despite IST is recommended for h-MDS, is still administered to exiguous proportion of LR h-MDS cases (at least in Italy) and the choice of therapy is not influenced by BM cellularity;
- KIR/NKG2 restricted NK cell expansions are detected in LR h-MDS, whereas cytotoxic clonal T cell populations in HR h-MDS. Prospective studies are needed to better define the prognostic roles of T and NK subsets in h-MDS.



## **CHOICE OF THERAPY**





#### **ACKNOWLEDGEMENTS**





MDS Unit, Division of Hematology AOU Careggi-University of Florence Florence



Italian MDS Foundation ETS (FISIM - ETS) Bologna



Padua University School of Medicine
Department of Medicine, Hematology
Division Padua

Prof. Valeria Santini Dr. Enrico Attardi

Dr. Alessandro Sanna

Dr. Marco Gabriele Raddi

Dr. Angela Consagra

Dr. Barbara Caciagli

Dr. Alice Brogi

Dr. Margherita Cassari

Dr. Cristina Amato

Dr. Carlo Finelli (Bologna)

Prof. Antonella Poloni (Ancona)

Dr. Monica Crugnola (Parma)

Dr. Pasquale Niscola (Rome)

Dr. Valentina Giai (Turin)

Dr. Valentina Gaidano

(Alessandria)

Dr. Sandra Mossuto

Dr. Giulia Calabretto

Prof. Gianpietro Semenzato

Prof. Fabrizio Vianello

Prof. Monica Facco

Dr. Antonella Teramo

Dr. Gregorio Barilà

Dr. Samuela Carraro

Dr. Valentina Trimarco

Dr. Cristina Vicenzetto

Dr. Vanessa Rebecca Gasparini

Dr. Gianni Binotto

Dr. Marco Pizzi

Dr. Roberta Bertorelle